Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 411-422, 2023.
Article in English | WPRIM | ID: wpr-982712

ABSTRACT

Alkaloids are a class of naturally occurring bioactive compounds that are widely distributed in various food sources and Traditional Chinese Medicine. This study aimed to investigate the therapeutic effects and underlying mechanisms of alkaloid extract from Codonopsis Radix (ACR) in ameliorating hepatic lipid accumulation in a mouse model of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD). The results revealed that ACR treatment effectively mitigated the abnormal weight gain and hepatic injury associated with HFD. Furthermore, ACR ameliorated the dysregulated lipid metabolism in NAFLD mice, as evidenced by reductions in serum triglyceride, total cholesterol, and low-density lipoprotein levels, accompanied by a concomitant increase in the high-density lipoprotein level. ACR treatment also demonstrated a profound anti-oxidative effect, effectively alleviating HFD-induced oxidative stress and promoting ATP production. These effects were achieved through the up-regulation of the activities of mitochondrial electron transfer chain complexes I, II, IV, and V, in addition to the activation of the AMPK/PGC-1α pathway, suggesting that ACR exhibits therapeutic potential in alleviating the HFD-induced dysregulation of mitochondrial energy metabolism. Moreover, ACR administration mitigated HFD-induced endoplasmic reticulum (ER) stress and suppressed the overexpression of ubiquitin-specific protease 14 (USP14) in NAFLD mice. In summary, the present study provides compelling evidence supporting the hepatoprotective role of ACR in alleviating lipid deposition in NAFLD by improving energy metabolism and reducing oxidative stress and ER stress. These findings warrant further investigation and merit the development of ACR as a potential therapeutic agent for NAFLD.


Subject(s)
Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Codonopsis , Liver , Lipid Metabolism , Antineoplastic Agents/pharmacology , Alkaloids/pharmacology , Endoplasmic Reticulum Stress , Energy Metabolism , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 52-59, 2022.
Article in Chinese | WPRIM | ID: wpr-940726

ABSTRACT

ObjectiveTo reveal the effect of Wenxin prescription on mitochondrial energy metabolism and silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/recombinant estrogen-related receptor α (ERRα) signaling pathway in rats with myocardial ischemia-reperfusion injury. MethodTotally 90 male Wistar rats of SPF grade were randomly assigned into a sham operation group, a model group, and low-, medium-, and high-dose Wenxin prescription groups, with 18 rats in each group. The rats in low-, medium-, and high-dose Wenxin prescription groups were administrated with 0.99, 1.98, and 3.96 g·kg-1 granules by gavage, respectively, and those in the sham operation group and model group with the same amount of normal saline. Twenty-one days after pre-administration, the rat model of myocardial ischemia-reperfusion injury was established by ligation of the left anterior descending coronary artery for 30 min and reperfusion for 2 h, and the rats in the sham operation group were only threaded without ligation. Myocardial infarction area was observed through 2,3,5-triphenyl-2h-tetrazolium chloride (TTC) staining, and the myocardial histopathology through hematoxylin-eosin (HE) staining. The levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) in serum, cytochrome C oxidase (CCO) and succinate dehydrogenase (SDH) in mitochondrion, and ATP in myocardial tissue were detected according to kit instructions. The mRNA and protein levels of SIRT1, PGC-1α, ERRα, and mitochondrial transcription factor A (TFAM) in myocardial tissue were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the sham operation group, the model group showed broken and disordered myocardial fibers, cytoplasmic edema, and pyknosis and deviation of nuclei. Moreover, the modeling increased the levels of CK-MB and LDH (P<0.05, P<0.01), lowered the levels of ATP, CCO, and SDH (P<0.05, P<0.01), and down-regulated the mRNA and protein levels of SIRT1, PGC-1α, ERRα, and TFAM in myocardial tissue (P<0.05, P<0.01). Compared with the model group, Wenxin prescription reduced the myocardial infarction area (especially in the high-dose group, P<0.01), restored the pathological changes, lowered the levels of CK-MB and LDH (P<0.05, P<0.01), increased the levels of ATP, CCO, and SDH (especially in the high-dose group, P<0.01), and up-regulated the mRNA and protein levels of SIRT1, PGC-1α, ERRα, and TFAM in myocardial tissue (P<0.05, P<0.01). ConclusionWenxin prescription can protect rats from myocardial ischemia-reperfusion injury by regulating myocardial mitochondrial energy metabolism via the SIRT1/PGC-1α/ERRα signaling pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 34-41, 2022.
Article in Chinese | WPRIM | ID: wpr-940515

ABSTRACT

ObjectiveTo establish an evaluation method for mitochondrial energy metabolism with Seahorse analyzer and investigate the protective effect of Yiqi Jiedu prescriptions (YQ) on mitochondria in rat adrenal pheochromocytoma (PC12) cells against hypoxia injury. MethodThe PC12 cell injury model was induced in vitro using hypoxic chambers. Five groups were set up, ie, a control group, a model group (model), high- (25 µmol·L-1), medium- (5 µmol·L-1) and low-dose (1 µmol·L-1) YQ groups, and a positive drug trimetazidine (TMZ) group, with three replicate wells in each group. The experiment was repeated three times. The established method for energy metabolism analysis was used to assay the activity of mitochondrial complex in cells and screen the optimal dosing concentration. Subsequently, the YQ group and modified YQ groups were set up, and the aerobic respiration and glycolysis function were assayed by the Seahorse analyzer. According to the non-mitochondrial oxygen consumption, proton leakage, basal respiration, maximum respiration, ATP production, and potentially improved respiration, the effects of modified YQ groups on the aerobic respiration of mitochondria damaged by hypoxia were evaluated by principal component analysis (PCA) and variable importance in projection (VIP). The expression of cytochrome C, B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) was detected by Western blot. ResultCompared with the groups of other concentrations, the optimal dosing concentration of carbonyl cyanide-4 (trifluoromethoxy)phenylhydrazone (FCCP) was 2 µmol·L-1. Compared with the model group, the medium-dose YQ group showed enhanced mitochondrial complex activity (P<0.05). The YQ groups were superior to the model group in improvement (P<0.01). The combination of ginsenoside and geniposide showed the optimal effect among the modified YQ groups (P<0.01). VIP analysis revealed that for the improvement of mitochondrial respiratory function, the contribution of geniposide in YQ was the greatest. Compared with the model group, the high-dose YQ group displayed reduced leakage of mitochondrial cytochrome C (P<0.01), decreased expression of Bax protein (P<0.01), and increased expression of Bcl-2 protein (P<0.05, P<0.01). ConclusionA cellular, high-throughput quantitative evaluation method for mitochondrial energy metabolism was established, which demonstrated that YQ could significantly improve the impaired mitochondrial energy metabolism in PC12 cells damaged by hypoxia, and the underlying mechanism might be related to the protection against mitochondrial apoptosis.

4.
Chinese Journal of Schistosomiasis Control ; (6): 470-475, 2021.
Article in Chinese | WPRIM | ID: wpr-904623

ABSTRACT

Objective To investigate the changes of mitochondrial metabolic functions of macrophages following Echinococcus multilocularis infections, so as to provide insights into the pathogenesis of alveolar echinococcosis. Methods Two groups were assigned according to different treatment methods. In the culture group, mouse leukemic monocyte macrophage RAW264.7 cells were cultured with 2 000 E. multilocularis at a ratio of 500∶1, while RAW264.7 cells in the control group were given no treatment. Then, both the culture and control groups were further divided into the 24 h and 72 h subgroups. Mitochondria were stained with MitoTracker® Deep Red FM and the mean fluorescence intensity of macrophage mitochondria was measured with the Cytation 5 Cell Imaging Multi-Mode Reader. The mitochondrial DNA copy number was quantified using the quantitative real-time PCR (qPCR) assay, and the mitochondrial energy metabolism was monitored using the Seahorse XF assay. In addition, the mitochondrial reactive oxygen species and mitochondrial membrane potential were detected using flow cytometry. Results The mean fluorescence intensities of macrophage mitochondria were significantly lower in the 24 h (15 341 ± 2 532 vs. 17 823 ± 3 429; t = 6.379, P < 0.01) and 72 h (18 102 ± 3 505 vs. 21 511 ± 5 144; t = 17.680, P < 0.01) culture subgroups than in the corresponding control subgroups, and lower mitochondrial DNA copy numbers were measured in the 72 h culture subgroup than in the 72 h control group [(3.23 × 109 ± 1.78 × 107) vs. (4.39 × 109 ± 3.70 × 107); t = 8.85, P < 0.001]. The oxygen consumption rates were significantly greater in the 24 h [(241.70 ± 73.13) pmol/min vs. (69.05 ± 52.30) pmol/min; t = 7.89, P < 0.01] and 48 h culture groups [(249.50 ± 42.06) pmol/min vs. (60.28 ± 40.66) pmol/min; t = 8.64, P < 0.01] than in the corresponding control groups, and a higher extracellular acidification rate was seen in the 48 h culture group than in the 48 h control group ([ 111.6 ± 17.49) mpH/min vs. (35.05 ± 7.57) mpH/min; t = 16.90, P < 0.01]. In addition, flow cytometry detected higher mean fluorescence intensity of mitochondrial reactive oxygen species (58 264 ± 10 087 vs. 4 307 ± 97; t = 12.930, P < 0.01) and lower mitochondrial membrane potential (9.833% ± 2.285% vs. 2.667% ± 0.208%; t = 6.645, P < 0.01) in the 72 h culture group than in the control group. Conclusions E. multilocularis infection may impair mitochondrial functions and inhibit oxidative phosphorylation of macrophages, resulting in increased macrophage glycolysis. It is speculated that the alteration of macrophage metabolic states may contribute to the mechanisms underlying the development and progression of alveolar echinococcosis.

5.
China Pharmacist ; (12): 205-207,224, 2017.
Article in Chinese | WPRIM | ID: wpr-606052

ABSTRACT

Objective:To observe the effect of Er Chen Tang on CYP2E1 and mitochondrial energy metabolism in nonalcoholic fat-ty liver disease ( NAFLD) to explore the role of Pinellinae Rhizoma Praeparata ( PRP) and Citri reticulatae pericarpium ( CRP) in the treatment of nonalcoholic fatty liver disease. Methods:Er ChenTang and the prescription without PRP or CRP was respectively given the animal models by gastric gavage. The serum levels of ALT, AST, triglyceride, cholesterol, SOD and MDA in hepatic tissue, and the contents of liver tissue CYP2E1 and ATP were detected in the mice. Results:The CYP2E1 levels in NAFLD mice increased signif-icantly with abnormal mitochondrial energy metabolism. Compared with those in the model group, the levels of ALT, AST, triglyceride and cholesterol were significantly reduced by Er Chen Tang, meanwhile, the content of CYP2E1 was reduced and also restored liver en-ergy metabolism. The treatment effect significantly decreased when the lack of PRP or CRP, and the ability of restoring liver mitochon-drial energy metabolism of Er Chen Tang decreased significantly when the lack of PRP (P<0. 05). After the removal of CRP, the in-hibition ability of Er Chen Tang to CYP2E1 levels significantly decreased (P<0. 05). Conclusion:Er Chen Tang can effectively im-prove nonalcoholic fatty liver diseases, and effectively reduce the content of CYP2E1 in liver tissue of mice and restore the mitochondri-al energy metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL